Deep learning Framework
From input to output, all steps and methods are presented for generic classification.
- Data
- Preprocessing
- Normalization
- Augmentation
- Model
- Parameter Initialization
- Regularization (L1, L2, Dropout, Batch Normalization, Early Stopping, Layer Normalization)
-
Loss
- Training
- Backpropagation
- Gradient Descent (Vanila, Mini-batch, Stochastic)
- Optimizer (SGD, Momentum, Nesterov Momentum, Adagrad, RMSProp, Adam, AdaDelta, AdaMax, Nadam, AMSGrad)
- Evaluation
- Metrics (Accuracy, Precision, Recall, F1, AUC, ROC, PR, Log Loss, Confusion Matrix, IoU, Dice, GIoU, mAP, mIoU, mDice, mGIoU, mRecall, mPrecision, mF1, mAccuracy, mLog Loss, mConfusion Matrix)
- Visualization
- Latency and Scalability (Inference Time, Throughput, Latency)