Deep learning Framework
From input to output, all steps and methods are presented for generic classification.
- Data
 - Preprocessing
    
- Normalization
 - Augmentation
 
 - Model
    
- Parameter Initialization
 - Regularization (L1, L2, Dropout, Batch Normalization, Early Stopping, Layer Normalization)
 
 - 
    
Loss
 - Training
    
- Backpropagation
 - Gradient Descent (Vanila, Mini-batch, Stochastic)
 - Optimizer (SGD, Momentum, Nesterov Momentum, Adagrad, RMSProp, Adam, AdaDelta, AdaMax, Nadam, AMSGrad)
 
 - Evaluation
    
- Metrics (Accuracy, Precision, Recall, F1, AUC, ROC, PR, Log Loss, Confusion Matrix, IoU, Dice, GIoU, mAP, mIoU, mDice, mGIoU, mRecall, mPrecision, mF1, mAccuracy, mLog Loss, mConfusion Matrix)
 - Visualization
 - Latency and Scalability (Inference Time, Throughput, Latency)